Support for Astronomy & Astrophysics at NERSC

Richard Gerber
Senior Science Advisor
User Services Group Lead
NERSC @ Berkeley Lab

April 9, 2014

Outline

- What is NERSC
- Who uses NERSC?
- How to get access to NERSC Resources
- NERSC Requirements Gathering

NERSC is the Production HPC & Data Facility for DOE Office of Science Research

Office of Science

Largest funder of physical science research in U.S.

Bio Energy, Environment

Computing

Geophysics

Particle Physics, **Astrophysics**

Nuclear Physics

Fusion Energy, Plasma Physics

Some Benefits of NERSC

- Large, state-of-the-art computing and data systems
- Consulting, system admin, 24x7 operations support
- Well maintained software environment, prebuilt optimized applications & libraries
- Designed for massive parallelism, but supports all scales
- Easily share data and codes
- Easy to use account management
- Large permanent archival data storage
- Ongoing technology refreshes
- Word-class cybersecurity
- Open science environment
- Web-based science /data gateways

NERSC

Focus on Science

- A word-class resource to support world-class science.
- 1,500 refereed journal publications per year
- Supports Nobel-prize winning projects: Chemistry 2013, Physics 2011, Peace 2007

Large diverse user community

- 5,000 users, 700 projects
- From 48 states, 65% from universities
- Many large international collaborations

Science-driven systems and services

- Designed to support science
- Optimized for scientific productivity at cutting-edge scale

Demographics

642 users from outside the U.S.

NERSC Systems Today

Adv. Arch. Testbeds Science Gateways

3.6 PB Global 5 x SFA12KE Scratch 5 PB **DDN9900 &** /project **NexSAN** 250 TB /home NetApp 5460 50 PB stored, 240 PB capacity, 20 **HPSS** years of community data

IB Fabric
Science Friendly Security
Production Monitoring
Power Efficiency
WAN

Edison Quick Facts

First Petaflop system with Intel "Ivy Bridge" processors & Cray Aires High Speed Network

Nodes	5,576 dual-socket with 64 GB memory
Processors	Intel "Ivy Bridge" 12-core, 2.4 GHz
Network	Cray "Aires" Dragonfly Topology
Scratch Disk	7.6PB with >165 GB/sec bandwidth
Peak / Sustained	2.67 PF / 260 TF
Global Network Bandwidth	> 11 TB/sec
Node Memory Bandwidth	90 GB/s

High-Impact Results on Day One

NERSC's users started running production codes immediately on Edison.

Top projects: carbon sequestration, artificial photosynthesis, complex novel materials, cosmic background radiation analysis

NERSC Supports Jobs of all Kinds and Sizes

NERSC-8 Mission Need

The Department of Energy Office of Science requires an HPC system to support the rapidly increasing computational demands of the entire spectrum of DOE SC computational research.

- Provide a significant increase in computational capabilities, at least 10 times the sustained performance of the Hopper system on a set of representative DOE benchmarks
- Delivery in the 2015/2016 time frame
- Provide high bandwidth access to existing data stored by continuing research projects.
- Platform needs to begin to transition users to more energyefficient many-core architectures.

NERSC Data Resources

- Global shared filesystems (aka NGF)
 - Connected to all NERSC computational systems
 - Large, fast, permanent data storage
 - Intended for data sharing within and among projects
 - Many PBs
 - Default quotas ~ 5-10 TB, but often increased
- Hopper and Edison have dedicated "local" scratch systems
 - 2 PB & 7.6 PB, respectively
- Archival storage system
 - HPSS tape-backed storage
 - Permanent, many 10s of PB
 - No quotas per se, current 240 PB capacity
- Grid enabled for fast and easy transfers
- Dedicated data transfer nodes
- Science Data Gateways

Solving the Puzzle of the Neutrino

- HPC and ESnet vital in the measurement of the important " θ_{13} " neutrino parameter.
 - Last and most elusive piece of a longstanding puzzle: why neutrinos appear to vanish as they travel
 - The result affords new understanding of fundamental physics; may eventually help solve the riddle of matter-antimatter asymmetry in the universe.
- HPC for simulation / analysis; HPSS and data transfer capabilities; NGF and Science Gateways for distributing results
 - All the raw, simulated, and derived data are analyzed and archived at a single site
 - => Investment in experimental physics requires investment in HPC.
- One of Science Magazine's Top-Ten Breakthroughs of 2012

The Planck Mission

- A European Space Agency (+NASA) satellite mission to measure the temperature and polarization of the Cosmic Microwave Background.
 - The echo of the Big Bang: primordial photons have seen it all.
 - Fluctuations encode all of fundamental physics & cosmology.
 - Planck results assumed by all Dark Energy experiments.

- Realizing the full scientific potential of Planck requires very significant computing resources
 - Tiny signal (μK nK) requires huge data volume for sufficient S/N
 - 72 detectors sampling at 30-180Hz for 2.5 years => 10^{12} samples.
 - Analysis depends critically on Monte Carlo methods
 - Simulate and analyze 10⁴ realizations of the entire mission!
- One of Physics World's Top 10 Breakthroughs of 2013

FACTORY

NERSC 2013 Usage by Scientific Discipline

NERSC YEARS at the FOREFRONT

Who Uses NERSC? – Archival Storage

High Energy Physics (HEP) and All NERSC Archival Storage

Office of

Science

Shared Permanent Disk Storage at NERSC - March 2014

DOE Usage by Office

Astronomy & Astrophysics Projects at NERSC

55 Projects in 2014

- 250 Million hours of compute time allocated
- 6.5 PB of archival data currently stored
- 1 PB on permanent spinning disk shared among project members (/project)

Science Emphasis

- Planck data analysis and synthetic observations/maps
- Supernova searches & transients
- Cosmological simulations
- Supernova simulations
- Other: Neutrino astrophysics, radio astronomy data analysis, galaxy formation, X-ray bursts, MHD, ...

HPC Services at NERSC

User Services

HPC Consultants (1 open position)

JGI Consultants

PDSF Consultant

Postdoc Program Coming Soon

Data & Analytics Services

+ Many partial FTEs

Year to Year comparison: JGI overall satisfaction with NERSC

How to Get Access to NERSC Resources

"ERCAP" allocations process

- 80% of compute hours allocated by DOE program managers to projects doing research within the DOE mission
- 10% allocated through ALCC (high-risk, high-payoff)
- Archival storage (tape) also allocated
- Project funding from DOE not required; at discretion of program managers

NERSC Director's Reserve for strategic projects

- 10% of computer time (250 M hours)
- NISE and Data Initiative exploratory programs

Startup Projects

- At NERSC's discretion
- Up to 50 K hours for 18 months

How to Get Access to NERSC II

Buy-in model for hardware and support

- PDSF cluster: Nuclear and High Energy Physics
- Genepool cluster & file systems: Joint Genome Institute

A La Carte resources run by NERSC

- Planck bought a rack of a compute cluster
- Fixed cost for 5 years of shared spinning disk (coming soon)
- The Materials Project has dedicated nodes
- Science Gateways

... the application of supercomputers, data systems, networking, and advanced algorithms & workflows to scientific problems that are either too large for standard computers or would take too long on them.

Understanding

How Proteins
Work

The Universe

HPC is a Tool for Discovery

Additional Slides

Requirements Reviews

1½-day reviews with each Program
Office

Computing and storage requirements for next 5 years

Scientific Objectives

- Participants
 - DOE ADs & Program Managers
 - Leading NERSC users & key potential users
 - NERSC staff & CS Experts

Computing, Storage, Software, Services Requirements

Reports From 8 Requirements Reviews Have Been Published

- Computing and storage requirements for 2014 & 2017
- Executive Summary of requirements
- Case studies
- Second round, for 2017 requirements, will be completed in April 2014 (NP)

Impact

- Highly regarded within DOE
- Scientific justification for ASCR budget requests
 - Quantitative requirements
 - Documented science goals & needs from science teams
- Basis for NERSC 7 and NERSC 8 Mission Need documents
- Influence on NERSC services
 - e.g. application readiness, support for high-throughput computing, planning for NERSC data services
- Derivative publications and reports:
 - HEP community's "Snowmass" Report
 - DOE ASCR white paper on data needs

HEP Executive Summary

- More computing and data resources needed
- Vastly improved I/O capabilities and better facilities for data-intensive science
- Need to support both large-scale and ensemble runs
- Assistance needed to transition to next-generation processors
- There are communities within DOE HEP that are not traditional users of large HPC centers, yet have a profound need for additional computing, storage, and analysis facilities. (LHC, sky surveys, ...)

HEP Cosmic Frontier Requirements - MPP

Project	Repos	2012 Usage	2017 Need	Factor Increase
Experimental Cosmology	LSST, Boss, BigBoss, DES, DESSN, PTF, DESI, COSMO	2 M	82 M	41
Cosmological Simulations for Sky Surveys	Cosmosim, cusp, hacc	24 M	10,000 M 3	2X is "Normal" 417
CMB Analysis	Planck, usplanck, mp107	13 M	500 M	38
Supernova Studies	m1400	13 M	200 M	15

HEP Cosmic Frontier Requirements - HPSS

Project	Repos	2012 Usage	2017 Need	Factor Increase
Experimental Cosmology	LSST, Boss, BigBoss, DES, DESSN, PTF, DESI, COSMO	40 TB	1,000 TB	25 "Normal" 6Xis
Cosmological Simulations for Sky Surveys	Cosmosim, cusp, hacc	70 TB	10,000 TB	6 ^{X 15} 143
CMB Analysis	Planck, usplanck, mp107	550 TB	50,000 TB	91
Supernova Studies	m1400	100 TB	2,000 TB	20

HEP Cosmic Frontier Requirements - /project

Project	Repos	2012 Usage	2017 Need	Factor Increase
Experimental Cosmology	LSST, Boss, BigBoss, DES, DESSN, PTF, DESI, COSMO	20TB	500 TB	25 "Normal" 6Xis
Cosmological Simulations for Sky Surveys	Cosmosim, cusp, hacc	120 TB	10,000 TB	6 ^{X is} .
CMB Analysis	Planck, usplanck, mp107	200TB	5,000 TB	25
Supernova Studies	m1400	3 TB	200 TB	67

Extreme Data Strategy

- Develop and deploy new data resources and capabilities
- Partner with DOE experimental facilities and projects to identify requirements and create early success
- Provide expertise and services for extreme data
- Leverage ESnet and ASCR research to create end-toend solutions

Thank you.

